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Thewretvical equations are developad for typical decompositions of polymers including thoge in
which the volatilization does not Epllow a simple “reaction order’” and those made up of a composite
of aevaral reuctions of diHering encrgies of activation. The effects of order, activation energy, heating
rate and temperature dependence upon Lhe caleulated thermograme is lluetrated.  The Kieratuce on
thermmogravimetric kinebcs in critcally reviewed and coalesced inbe 2 logical and coherent development
stressing the interrelavion of methods and employing 5 consistent aystem of notelion.  As & result,
a number of improved methods and new methods for the analysie of kinelic data applicable to 1he
complex sysicma menlioned above are developed. Inis concluded that methods involving a variable
rate of heating or involving several theymogravimetos teces al different cates of heating are capahls
of establishing the unigueneaa of kinetic parumeters. A new method of determining iniial parameters
from rate-coovermion data in developed. A novel concept is employed of programming reaction variables
fin this case, the heating ratel in a manper which greavfy simplifies the mathemaies of the kinetic
aystem and which shows promise of a wide range of applicability in the ares of rale processes,

Key Warda: Degradation, nonieothermal kinetica, polymers, pyrolysis, thermal decompogition,
thermogravimetry, thermolysis, siability of polymera.

1. Introduction

Thermogravimetric analysis iz used widely as a method to investigate the thermal decomposi-
tion of polymers and to assess their relative thermal stabilities [1,2,3.4].7 Also. considerable
attention has been directed recently toward the exploilation of thermogravimetric data for the
determination of kinetic parameters. A number of these methods will be discussed later in this
paper.

Many of the methods of kinetic analysis which have been proposed are based on the hypothesis
that, from a single thermogravimetric trace, meaningiul values may be obtained for parameters
such as activation energy, preexponential factor and reaction order.

Thus, many of these methods make two assumptions, viz, these parameters are useful in
characterizing a particular polymer depradation, and that the thermogram for each particular se1
of these parameters is unigoe.

Therefore, in this paper, we will test the validity of these assumptions by setting up several
idealized typical ca=zes of polymer degradation kinetics, ob=erving how the structures of the cal-
culated thermograms are affected by changes in order, activation energy, heating rate and tempera-
ture dependence, and determining by means of & crtical evaluation of both existing and new
methods if there are any general treatments of theze data that will permit the determination of
parameters that may he wseful in the interpretation of degradation mechanisms.

2. Theory

We shall assume for the present that the isothermal rate of conversion, dCfds, iz a linear
function of a single temperature-dependent rate constant, , and some temperature-independent
function of the conversion, £, i.e.,

dE_
dt—kf{ﬂ}. (L}
'r'ml:il' | Ak gt the Hearsd rafarences wi the end of this paper.
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., the conversion (degree of completion or advancement, extent of reaction), is defined here as
the conversion with respect to initial maverial. Thus C=1—(F/F.), where ¥, is the initial
weight and F is the weight at any time. Therefore, the residual fraction (1 — Cy= ¥/#, and the
rate of conversion, 0 de =— 1/F, (dF {di).

Zome investigators prefer to define an instantaneous rate of conversion such that C7fdt
=1/F {dFdt} and thence €' iz proportional Lo the logarithm of the residual fraction. However,
unless perhaps dealing specifically with first crder reaction kipetics, there seems to be little
special appeal for this latter definition of conversion.

When the polymer does not completely volatilize at T or £— =, or if the volatilization takes
place in steps, the conversion may for convenience, or depending upon one's insight inte mech-
anizm, be defined differently based on the total weight loss hetween two successive horizontal
portions of an integral thermogram. Equation (1) excludes composite cases where simultaneous
of zuccessive reactions involve several temperature dependent rate constants. Several of these
cases will be considered later.

At a constant rate of heating, 8= dT/dt, and assuming & independent of C and ) independent
of T, the variables in eq (1) may be separated and integrated to obtain:

(€8¢ _1 -
F{m‘fﬂm B Jp, =% @

where F{{) is the integrated function of conversion and @ represents the temperature integral.
In analogy to simple cases in homogeneous reaction kinetica, we express the conversion func-
tion by

AG={n+1DA—Cp 3)

where r is defined as the order or reaction. n+1 is the normalization factor for the isothermal

cases such that (m+ 1) J-l (dCikd?) dC=1. mn is equal in value to A and included only in the eal-
13

culated curves so that they will exhibit maxmum thermogravimetric rates at approximately the
same temperature,
Substituting eq {3) into eq {1) and integrating, one obtaing

a—gpr—1_ .
m— kt or — & {n#l}

i4)
1
in+1}

Inil—C)=—&t or — D {n=1)

{— ke, if T=const.; — &, if T2 const}h

The normalized isothermal curves from eq (4) for rate versus conversion are plotted in figure
1. Some of these curves indeed do approximate ones obtained in polymer degradation stodies.
For example, if the depolymerization is initiated at chain ends and the zip length of the depropaga-
tion reaction ie much shorter than the polymer chain length, ag is the case in high molecular weight
polymethyl methacrylate, then a targe portion of the reaction follows zero order kineties [5] If
the zip length is moch larger than the polymer chain length, first order kinetics results [5). Other
cases of degradation kinetics, such as is found for branched polyolefins, may be fitted over a range of
conversion by higher order curves [5].

However, in a large number of polymer decompositions, the isothermal rate of conversion goes
through a maximum value. Such behavior describes a wide spectrum of polymers [5].
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Ficuae 1. Efect of arder on normalized isothermal rate
erses degree of conversion.

Random depolymerization, where most of the early scissions result in fragmenta too large to
distill off, produces an isothermal rate curve with a maximom at 26 percent conversion.
For random depolymerization [6],

{3)

1-C={1— o)t [1+a{—N_L}$L—11]

where ¥ —1 i= the inidal number of carbon atoms in the chain skeletan, I is the number of carbon
atoms in the smallest chain that does not evaporate, and e, the fraction of bonds broken.
Differentiating eq {3) with respect to kt,

%={L—IK1_C}—{1—MLW L

and eliminating @ from egs (5) and (6) for the simplest case, ¥ & L, L=2, result in
FIC)y=BCV2—=(])

for the normalized isothermal equation. In formulating the above approximation (Case A), the
term for the initial isothermal rate, [L{L + 1)I}¥ has been assumed equal to zero since in practice
N2 L. Hence the expression poes to zero at C=0 and ia not applicable te initial situations.
The solution of eq (5) for & involves an Lth order polynomial so that it is not practicable wo obtain
FICY in analyvtic form for large L. Also, maximum rates are never obtained at greater than 26
percent conversien from random depolymerization. Therefore, an empirical cubic equation was
devised to fir several cases found in isothermal degradation kinetics,

For the equation

ac _ % 7
dh—m{: + @02+ a0+ aa) {0
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the following boundary conditions:
(%)
() () . (4G —o (e
Bht) ey \BB max'  \DKticmt (iq ¥

are satisfied when
N= 12[(y — 1) {1 = 20} — 1) E!=W—{T_ 1) {1 — 3w}
wlBw? — 16o — N —(y— ) (6w~ 6w — 1) (y—Dil—20)—a® *

_efiy — 1) 2 — 3o — 0] - o — 1P
D0 —2w—wt ' M B =TT 2w

For Caze B, we assume the maximun rate at ) percent conversion and a maximoum rate three
times the initial rate, (w=190.5, y=23) and obtain,

foy=—22 (c'=+c=—§ r:-i)-

For Case £, {w=1.25, y=13), eq (7) has a minimuom a= well a5 a maximom in the range £=10
to 1. However, Cage € was fitted satisfactorily by reduction of the order of eq (7) which gave after
normalization,

fo=-5 (cm+r::—£ :‘:m_i).

The pormalized isothermal rates for Cases A, B, and C are plotted against conversion in
figure 2.

Curves A and C closely resemble theoretical curves for pure random depolymerization or
for depolymerizations of moderate zip leagth invalving considerable molecular transfer. Case B
is representative of depolymerizations in which the initiation occurs at chain e£nds, the zip length
is moderate and either a slight amonot of transfer or random initiation take place. Such curves
are characterized by a maximum in the 50 percent conversion region [7].

The equation for Case A may be substituted into eq (1} and integrated and if the solutions of
the cubic in the equations for Cases B and C are expressed as partial fractions, substituted ioto

FizuRe 2. NMormalired isothermal rate versus degree of
conpersion, Coses A, B, and €.

1
]
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eq (1} and integrated, one obtains:

for Case A,
3 ln (1l — £V =—kt or — b,

for Casze B,
% {in {1 — €3+ 0.6547 In (€ -+ 1.8660) — 1.6547 In (7 +0.1340) — 1.6219} =— &kt or — P,

and for Case C,

8

105 {In (1 —C¥8}—1,2217 In (€' + 1.86600 — 0.2217 In (C** +0.1340) + 0.5451 } =—kt or — ¢

{— &, if T=rconstant; —®, f T # constant).
The Arrhenius equation,

k= Agi-BRT} (B
is almost universally assumed for the temperature dependence of &, where A, the “preexponential
factor,” is usually assumed to be independent of temperature, E iz the energy of activation, and

R, the gas constant =1.987 cal mol~" °Ki ' {1 cal=4.1840 ]},
Substituting eq (8} into eq (1), one obtains

dC_gdC_ 4isi
& P ar— 44RO ()

which upon integration becomes

_[IE AT ngr e B[ £ [T 4 _AE
th_,[: AQ) B rqe’ﬂm‘fr ® BR{ P -wxdx] gR P {0

where x={—E{RT). It is assumed that T is low enough for the lower limit to be negligihle.
If A€ is given by eq {3) then eq (9) becomes,

dC_, dC

B = Ae=EE(1 — (11)

which, upon integration hecomes,

(1 —CP-n=1 —‘_J.E
1—n _3-R P{x}
r#1) 12}

lnu—m=§—£p{x1
(rh=1).

pix), which includes the exponential integral, has been tabulated for limited ranges [8—11].
There are several series expansions and a semiempirical approximation for pix). These are given
below az they are utilized in many of the kinetic metheds which will be discus=ed later.
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2.1. Asympitotic Expansion [12]
p[x}-—( +2'I+i:+ .+ )

x %= — 10; number of terms =|x].  {13a)

2.2, Exponsion in Series of Bernoulli Numbers [12]

p{x1=§(-u.m35+° 998710, 1.9B487646 | 4.9482092 _ 117850702
x x x? x? x
+ 20452300 | 210400 + 20201 4+ .35 1u—=) (x=—2. (13b)
A
2.3. Schlémilch Expansion [13]
¥ 1 2 3 14
=T (T eI T 5T 5T 5T 5T )

(y=—xc= 15 {13c)

2.4. Doyle's Approximation [14]
log p{x) = —2.315+0.457x

—20=x=—60. (134

Doyle [15] has found that two and three term approximations for eq {13¢) are more accurate
than the respective approximation for eq (13a}. Equation (13b) is almost equivalent 1o eq (13al
for the first several terms.

Ar the limits, — 203 x = —6l), eq [13d) i=s accurate within =3 percent [11].

An extensive table of log p{x) for various 2's was caleulated from eq (13b) as this equation
gives gquite accurate valoes even for small x.  This table was nsed for the caleulation of the ther-
mograms presented subsequenity.

If the preexponential factor, A, is linearly dependent on 1emperature, ie., 4 =A,T

k= A, Tet-BiRT (14}
thexn,
A i A E?
¢'=-zﬂ'i: [§+;— 5 dx}= agRs P (15)
where,

{16}

i) = (—0.0000035 - LU0, LAHRTHE )

x x?

A tahle of log pix) values was composed 1o investigate the effect of temperature dependence.
Vallet [9] has derved expressions for £ =412, k= A;T2el-EA0 gnd recursion formilas
for calculating the above three cases of temperature dependence.
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3. Calculated Thermogravimetric Curves

Imtegral thermograms were obtained by caleulating 4 and T at various x and sobstituting
d into eq (17).

1
A—O={m+Dir—1J@+117=  (nxD)
{17)
A-C=e*  (a=1).

Figure 3 contains curves for the residual fraction, 1 —C, versus temperature for various orders
from () to 4 for the case 4/8 = 10"/"K, E = 60,000 calfmol.

The differential thermograms corresponding to the integral curves in figure 3 were obtained
by subetitution of values of & at various T into

% =£“';‘3—“4 {in+1)(n— )b+ 1} gl-siem), (18)

These thermogravimettic rate versus lemperature curves are contained in figore 4.

Zero and negative orders exhibit ever accelerating rates, Curves for orders between zero
and unity go through a maximum rate and, in the jdealized case, reach compiletion at a finite
temperature. For curves with r 3= 1, increasing order results in a more gradual alope and a more
gradual asymptotic approach to the abscissa.

Integral thermoprams for the “maximum® Cases A, B, and C were obtained for the same
values of A{8 and E by calculating 3 at various values of € from the imegrated equations for the
three cases. The corresponding x and T values were obtained from ®. Residual fraction versus
temperature curves for these cases are contained in figure 5. The early negative-order character
of these curves manifests itself by a more precipitons slope than for the zero order curve at the
same activation energy.

Tim

Ficure 3. Effect of order on residuci froction oeraux
lemperaire.

=, 0%, 1.0, L0, 30, aad 43; ket .
A L S0 a0l L] Tirw] Lo

Ficuag 4. Effecy of order on thermogracimetric tate
versus lemperature.
a=0, &5, 10, 20, 3.0 and 3.0
Al W B SO0 el .
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Feune 5. Residuad fraction cersus temperature for Caser FiGURE 6. Thermogronimetric rqie terswd  [Emperalure
A B, and €. Jor Coaexr A, B, and €.
Affr= LK E w0000 calfmal, Al = 10WK; K= 60,000 calfme.

The corresponding differential thermograms for Cases A, B, and € were obtained by direct
substitution of € and the corresponding T values from the integral caleulations into eq (9).

The thermogravimetric rate is plotied azainst temperature for these cases and the same values
of A8 and ¥ in figure 6. The firat arder curve is included for comparison.

The minor detail of the differences among Cases A, B, and C is not significant as these curves
are based on asymptotic or semiempirical equations. The slope is greatest in Case B where the
maximum iscthermal rate is at 5 percent converaion.  As v {maximum ratefinitial rate} approaches
unity, the corves would more nearly resemble zero order with a tail.

3.1. Thermogravimetric Ruate Yersus Conversion Curves

The previous kgurea (kgs. 3-6) of residual fraction or thermogravimetric cate versus tempera-
ture have been the traditional methods of representing thermogravimetric data. It is surprising
that plots of the rate as a function of degree of conversion (dC/dT versus C) have not been utilized
as similar presentation has been found to be quite informative in isothermal studies, e.g., figure 1.

Figure 7 exhibits the thermogravimetric rate as a function of conversion for zere through fourth
order and Cases A, B, and C for A/3=10"K and E= 60,000 cal/mol.

The zere order coyve is almost linear while higher order enrves go through a maximum rate
as C—1. They approach the zero order corve as € — 0. Curves B and C also approach the
zeto otder curve asymptotically at fow conversion but deviate in the direction of negative order.
Curve A is anomalous at £— 0 as was mentioned previonsly.

A hetter inzight into the behavior of the curves in figure 7 may be obtained by differentiating
eq (3 with respect to conversion o obtain

FC _E | fiC)dC
dCdT RT f0) dT

(19}

where () ia the derivative of /(£ with respect to €. If AC) is given by eq (3}, then similar dif-
ferentiation of eq (11} gives

#C_E _ n_dC 20
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Ficune 7. Thermogravimetric rote  versus  degree of i
CORVEFIiGH.
n=0,05,1.0, 20 3.0. and 4.0

Carma A, ﬁ ad
Aff= 10FE: Emi@ 000 calimol.

oS

Thus the slope of the zero order curve will be given by E{RT2. At ordinary activation energies,
the absolute tempetature is a slowly changing variable over the reaction temperatyre range =o the
slope will be essentially a constant. The thermogravimetric rate is quite small at low conversion
ga all other cases approach the zero order case as € — 0, subject to the condition, f{C =0} 0.

Thus, one may obtain a qualitative underatanding of the early kinetics from the limiting
characteristica of 4C)/dt versus €. I the curve iz initially concave, a negative order character,
j.e., an initially increasing isothermal rate a: in Cases B and C is indicated. Initial convexity
suggests positive order behavior, while approximate linearity connotes kinetics not far remaved
from zere order. Indeed such a plot may be of great practicable applicability, e.g., to test whether
an apparent maximum rate in an isothermal curve is due to an initial temperature lag or an actual
initial increase in rate.

3.2, Effects of Activation Energy

The effect of change in energy of activation upon the character and shape of the thetrmograms
was investigated by considering three caszes of first order kinetics—1, E=60,000 calfmol, II,
E=40000 calfmol, and III, E=380,00 calfmol. The parameters A/# were adjusted so that the
maximum slopes oceur at the same temperature in each case. The imegral curves are plotted in
figure B and the corresponding differential curves in figure 9,

The maximum slope increases linearly with increasing energy of activation since, from eq

{20), at the maximum
(%%)..u_ PR T {21}

Other relationships at the maximum will be discussed in the section on differential methods.

3.2, Effect of a Tamperaturs Dapendence of the Presxponential Factor

A slight temperature dependence of the preexponential factor is sometimes noted in isgthermal
studies. Tndeed, according to collision thesry, 4 is propottional 1o TVY2 for & bimslecular gas
phase reaction and, according to ttansition state theory, the preexponential factor containa tem-
perature 1o the first power.
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FiGuee 8. Effects m:-q-ﬁcm enemnd Preexponien- Figueg 9. Effects of activation snergy and preexponentizi

tial temperature nACe 0N FEs Jrochien versu temperature  dependence on  thermogrovineiric  rats
Ee e rafore. reErsus lemperofure.
=l Re=1
1 Ewmfh il calimol; Aif=104"K 1 Em bl calfwad: A [
L d e bR e
- : - ' B LR
IV Eab0,008 ralimol; A/f= 1 374% HOFK, AT 1V £ 50,000 = -nl;dﬁ-l.ﬂlxl&“{"é; AT

Since in both isothermal and thermogravimetric cases usually the same analytic process is
involved in activation energy determination, ie. the logarithm of some function of a rate is plotted
against 1/T{°K), any etror resulting from ignoring temperature dependence in the determination
of E should be about the same in both cases. If 4 is lincarly dependent on temperature, the dif-
ferentiation of the logarithm of eq (14) with respect to 1fT resnlts in

dink__ . E
(7)
T

R
Thus, at T="500 °K, the comrection for linear temperature dependence of 4 on the experimentally
obtained activation energy will be about 1 kealfmeol.

In order to observe the effect of linear temperature dependence of the preexponential factor
on the shape of a thermogram, Case IV, E=560,000 calfmol, A/8=1.374 % 10" (*K)%, was cal-
colated for various orders wsing pyix) valoes obtained from eq (16). The integral and differential
curves for firat order kinetics may be compared with Case I, E=60,000 calfmol, 4/g=10 "K)-!
in figures 8 and 9. The difference is trivial for these conditons. The effect is in the direction of
increased slope and je greater for higher orders. It will be significamt only at very low activation
energies.

If a single Arrhenius expression iz applied to situations involving simultaneous reactions, the
parameters £ and 4 well may exhibit temperature dependence. This aspect ja discussed in the
section On COMposite cases.

{22)

3.4. Effact of Rate of Heating

Analyses of the changes in thermogravimetric data brought about by variation of the rate of
heating, 8, are the baais for the most powerful methods for the determination of kinetic parameters
and these methoeds are discussed in subsequent sections.

Figure 1) contains the integral curves for Case B with maximum isothermal rate at 50 percent
completion for 4{8,=10""K, E=060,000 calfmol and heating rates of &, =0.05, B:=0.10, and
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Bz =020 "Kfsec. Figure 11 contains the thermogravimetric rate curves for the same case and
conditions. Mot only are the curves shifted to higher temperatures by increased heating rates
but they become less steep.

3.5. Compaosite Coses

The majority of experimental thermograms found in literature represent cases in which two
or more volatilization reactions take place. If the values for the kinetic parameters, e.ﬁ., E and
A, for each reaction are such that the regions of weight losa eceur at separated temperature ranges
then a stepwise thermogravimetric trace resulis. In these cases, each curve between successive
horizontal portions may be treated separately. However, many cases are more complex. An
example is a polymer which undergoes both depolymerization and side group splitting or ring
formation, followed by depolymerization of the thermally more stable product polymer.

Here we investigate only two simple cases:

{1) Twa Independent First Order Reactions
If a fraction of the material, e, volatilizes by a first order reaction with Arrhenius parameters

A, and E,, and the remainder of the material volatilizes hy an independent first order reacton with
pararmneters Az and E; , the residual fraction will be given by

1-C=ga [e ~4F (- ]+{1—a] [ e —Rs(-8) ] (23)

(2} Two Competitive First Order Reactions

Ti the total material may be volatilized by two alternative patha, each having a rate proper-
tiondl to the first power of all remaining volatilizable material and if the respective Arrhenius
parameters are A; and E, and 4; and E: for the two paths, then the residual fraction will be

1-C=e~ 5k (-f)- 4 (-R). 24)
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To obeerve the effect of variation of heating rate in theze composile cases, integral and differ-
ential curves were calculated for a=0.5, E;=30,000 calimol, E:=60,000 calimol, A:=10%sec
and A, =3.458 X 10%sec for heating rates of 1.0, 0.1, and 301, and 0.001 °Kfsec. The value of
A, was selected so that for Case (1) at §=0.1 "K/sec and €=0.5, the first reaction contributes
75 percent to 1-C and the second reaction, the remaining 25 percent.

The integral curves are shown in Bgure 12 and the differential curves in figures 13a and 13b
for the two cases.

Such a thousand-fold variation in heating rate is not easily realizable experimentally, but was
used in these theoretical caleulations to illustrate as wide a variety of situations as possible.

It is immediately apparent from inspection of figures 12 and 13 and eqs (23) and (24) that for
these cases of two Brst order reactions with widely differing activation energies, the thermograms
for Cases (1} and (2) exhibit quite different variations in structure upon changing the heating rate.

Case (1), (independent reactions), at the highest heating rate jand temperatore), (8=1.0),
gives the appearance of one simple thermogram as the two reactions broadly overlap one another.
As the heating rate is lowered, (8=0.1), the curve tends to flaiten as the two reactions begin to
separate. The decrease in the value of the thermogravimetric rate at the maximum with decreas-
ing f3 is the opposite of simple reactions as seex in figure 11.

At B#=0.01, the two reactions separate further and two peaks are obtained on the differential
curve. It may be noted that at these conditions the “maximum™ temperature for the higher
activation energy reaction has been shifted five degrees by the perturbing influence of the low
enetgy reaction.

By 8=0.001, the low energy teaction, favored at the lower temperature, is almost completely
separated from the high energy reaction.

On 1he other hand, in Case (2} (competitive reaclions), for the values of parameters considered,
the low activation energy reaction takes over almost completely at low temperature and heating
rates {§=0.001 and §=0.01). At the high heating rate, (8=1.0}, the low activation energy
reaction dominates only during the first 30 percent of weight loss, with the high energy reaction
considerably modifying the latter portion of the thermogram. Again, the inclusion of the high
energy reaction cavses a temporary increase in (dC/dT )y with increasing 8. In simple reactions
the maximum rate decreases upon increasing B and T, [se€ eq (21)].

Two competitive frst order reactions with equal activation gnergies (&, =£3) appear as &
simple first order reaction no matter how great the difference in preexponenial factors. This
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is true of any set of competitive reactions of the same order. If they are of differing order, thea
they are, in theory, resolvable.

The differentiation between two independent first otder reactions with the same activation
energies depends upon how greatly A,/4,; deviates from unity. The resolulion is relatively un-
affected by changing the rate of heating,

Thus, the technique of varying the rate of heating in composite cases not only often permits
& separation of reactions but often gives information as to the nature of the competition between re-
actions. This aspect is discussed further in suceeeding =ections on methods of kinetic analysis.

The application of more complex empirical substitutes for the Arrhenius equation to experi-
mental data invelving composite veactions has been discussed by Farmer [16].

4. Critical Survey of Methods of Kinetic Analysis

The methods of kinetic analysis of thermogravimetric data are divided inte five categories
to facilitate discussion and comparison. These are —(a} “Integral” methods otilizing weight loss
versus temperature data directly, {b} “Differential” methods utilizing the rate of weight loss,
(¢! “Difference-Differential” methods involving differences in rate, {d} Methods specially appli-
cable to initial rates, and {e) Nonlinear or cyclic heating rate methods,

4.1, Intagral Methads

The fundamental crticiem of integral methods as applied to a single thermogravimetric trace
is that “best values™ of 4, £, and r are inevitably fitted to the data whether or not these parameters
have any significance ot even utility in the understanding of mechanism.  Also to obtain the activa-
tion energy the order must be koown or vice versa. This latter problem has been met with varying
success in several ways.

As many of these methods invelve an approximate integration of the exponential inegral,
they will be compared 10 eqs (13a, b, ¢, d) when applicable.

The first serious theoretical treatment of thermogravimetric data was by van Krevelen et al.,
[17]. These authors approximated the exponential integral by making the substitution

e‘ﬁ=(e ‘E"‘) = (0.308 ) w (25)

where Ty is the temperature at the maximom thermogravimetric rate.  Thus, they obtained for
eq (4 in logarithmie form

n [4=G22 =]

o n|_, TR 0368, oz 5
=In [ﬂE(Tm) {T'"““}] R Tt ¥ 26)
In Infl—C)
in=1}

and tested ior linearity of In T for various values of 5. Reactions are insensitive to erder at low
convergion s0 in order to obtain # from thiz or similar methods linearity must be establinhed at
high conversion. However, linear plos over much of the conversion range were obtained from
eq (26), r=1, for Cases B and C with maximum isothermal rates. Thus, the method ahould be
limited to cases in which a known isothermal order is followed.
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Baur et al. [18], in 1955 applied a graphical solation of the exponential integral to the case of
a linearly temperature dependent preexponential factor (eq (13)) for data on the high pressure
oxidation of metals and obtained good agreement between experimental values and theoretical
valnes based on a parabolic rate law. Smith and Arnoff [8] in 1958 caleulated 2 table of pix)
values for x=1 to 50 and used it to fit data on the thermodesorption of gases from solids to first
and second order kinetics by a method of trial and error.

Doyle [10], in 1961, presented the most formal method for the precise curve fitting of 2 single
thermogram ysing caleolated tables of log pix). However, as in other such methods, its applica-
bility is limited to cases of known isothermal order.  As the method is quite tedious, Doyle devised
an approximate method based on the first two terms of the asymptotic expansion (eq {13a)).

Pa,x(x)me g —ERT(£7) 7. (27}

Far cases of unknown order, Dovle [10] suggests making calculations as early in the reaction
as experimental accuracy allows. However, even using € =0.05, one obtsins appreciable errors
in the determined activation energy when this method is applied to maximum Cases A, B, and C.
Nevertheless, such integral cutve fitting of a single trace is more generally applicable than simiiar
differentizl methods.

Farmer [16] defines the relative error using the two term asympiotic approximation as

— B
t Pezlx) (28)

This relative error, rz, and 5y, the relative error in using three terms of the asymptotic approximation,
are shown for several values of x in table 1.

TaBrk 1. Relative errors for o and threc-term asymplofic op-
proximations of pix)® a5 @ function of x={—E/RT)[15, If]

-

3
i1} 0 13 o E
n O L 48 kL b6z
n 1856 1414 L Lo 1002

" pgm—Tg [,
#al :+L'¢.

Farmer [16] substituted eqs (27) and (28) into eq (10} to obtain in logarithmic form
N
a F(C) __E 1 E_A'_
log 225 oo (7} +108 [" ﬁE]
or (29

F:.‘E
_ do fIO)_ LA] E_
T log 250 Tlug[rsﬂg by

where ry is a slowly changing function of temperature. The second expression was found to be
gensitive to data point deviation.
As rofrs =14 2fx=1—(2RTIE), if the first three terms of the asymptotic approximation are
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utilized and if £(C) i= given by &g (3) then

1-(1—t:}l—=-]
(1 —n)

1

log

1) AR[, 2RT]
=log gy [ ET] 2.303RT (30)
log [ln L ;"s
{n=1)

which was developed by Coats and Redfern [2, 19]. A plot of log FiC)T* versus 1/T appears te give
quite satisfactory results when the kinetics follow a aimple order. However, as with previous
methods, application to systems of “changing order,” e.g., maximum Cane B, results in erroneouns
values for E.

As Doyle has done, Coats and Rediern {20] have gone to low conversion data to get around the
problem of determining order.

Assuming all reactions behave as zerc order as € — 0, they obtain from eq (30)

l
log 75 i 108 _E[I_T Z303K 3033 T @D

and a plot of bog CfT? versus 1T for low C or & s 0 should give a straight line with slope of — E{4.6
as log AR{RE[1—2RT(E] i= again sensibly constant. [t is doubtful that this approximation may
be generally used up to £=0.3 a8 is suggested as lor at n =2, the exror in F{C) amounts to 40
percent at C=0.3.

Horowitz and Metzger [21] simplily the exponential integral with an approximation similar
to but simpler than van Krevelen et al., i.e., defining a characteristic temperature, #, such that
A=T—T; where T; is a reference temperature at which 1—C=1fe. Then making the approxi-
mation

1_ 1 1 1 @
T ( .9) =T, T% (62)
Tl 14+
T
they finally obtain for n=1,
In nj1—Cy= RTE 33)

so that a plot of In In(1 —C} veraus # should give linearity with a slope of EfRTS .

For caszes in which r # 1, more complicated expressions are suggested [21] involving derivative
parameters and Ts is defined as the temperature at the inflection point.

One may obtain frem eq {12 using eq (13d) for log p(x} and making the approximation of e (32)

AE 1.052 | 1.052E9
BR —0.33— + (34

Ts RT:?
which gives the same slope as eq (33). However, eq (M) does not include the condition that Ty
is the temperature at which 1 —C=1/e.

Inln{l —C)a=ln—5

5
230736 O-56—+



Thus, eq {(34) suggests the generalization of Horowitz and Metzer's method to the case where
A # 1 and Ty is any reference temperature as in eq {35). (The “constant,” L052, may be improved

upon ofice an approximate E has been determined from a table of first differences of log p(—EfRT)
for various E/RT, [11])

LOS2ES
kT

In{1 —{1—}1-%] & constant + (35}

{r#1)

E may be caloulated using eq (33) with fair agreement with theoretical values for E= 60,000
calfmol, Afg=10"%"K for n =1, but theoretical data for £=1f2 as well as, For example, maximum
Case C, alao give nearly linear plots for In In{l — €} versus @ over a wide range and high values
for the energy of activation.

Few papers on computational methods have been published [2, 22], but such methods are
probably widely used. MeCrackin [23], in an unpublished work, has programmed a method in
which & series of weights, wy, and temperatures, T, are fed to the computer and values of (1 —C
and F{C;) are computed for each temperature, assuming ». From equations

dC A
FiC)= f ¢ ==

W=} -8 b
where xi=(E/K)_E/RT) and I'_, ia the incomplete gamma function of — 1 order, values of x,; are
computed for an assumed E and data fitted to eq (36) to determine A{8. Assuming the error in

C; is only experimental and independent of its value, F{€)) will have a constant variance so the
hest estimate for A/8 will be given by

3 aFCH1 —Co*
1 .

{37)

T

3 xl — Cen

i

From eq (36}, FiC) is computed for each i using the calculated values of Af8. Then, {1—C5)
and I, are computed. The standard ervor of At is

— 2

N = No. of valuoes of Fand W,

This is computed for various values of n and £ and the values that give the smallest o are
chosen.

To summarize, the computer calculates and prints o for values of X for =10, 1/2, 1, 3/2, 2, and
3. Then, for each n, it chooses the value of E that gives the minimum ¢ and prints E, o and 4/8 for
each ». It then prints #Fcalc) —F{expt) for these values of E.

Since only il FFileale)— Filexpt) remains sensibly constant over the entire range can the system
be said to have a particular a and E. it would appear that McCrackin's method tests the validity
of it azsumptions.

Reich and Levi [24] have developed a method involving the determination of the area under
the initial part of an integral thermogram to obtain an approximate expression for the energy of
activation. Dovle [25] paints out that such a method shoeuld be less zensitive to experimental
scatter than line or slope methods. The correcied derivation [25] of the equativns inclodes the
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approximation in eq (}3d}, i.e., p{x}=Ce", 10 obtain for =1,

A : E
I dy=1n % (%) — 39)
which for two different initial areas becomes
AI+II
in (924)
E= (4,

1 1
Rl=—
( [ TI+II)

where A;,nfd, is the ratio of initial areas. As will be shown subsequently, the coefficient of EfRT
assumed o be waity in eq (39 is a slowly changing function of E{RT and more accurate values may
be obtained for £ by successive approximations, Also, the general utility of eq {40) depends on
the lack of sensitivity to order in the early conversion range.

Reich [26] has pointed out that at small and constant AT from eq (11)

IndC
(r=0)
E A
@ —ertln 2 AT {41)
Inln (1—C)
{(n=1)]

AT=constant.

Lhility of eq {41) iz limited to cases in which a particular reaction order, &, is known o be

followed.
Reich [27] using the approximations made by Horowitz and Metzger [21] obtained at constant

weight loss for two different heating rates,
1.61log & (T‘)

EE_E__TZ_ {42]

o3
n T
by assuming that Tg /Ts =T /T,
Howevet a simpler expression has heen developed [11] by the subssitution of eq (13d} into
eq {10} to obtain

o AE E
log FiC) = log 3 —log B—2.315.457 T {43)

g¢ at constant conversion for several heating rates a plot of log 8 versus 1/T will have a slope of

M =, 4~5?E or E=—435 —— dlogﬁ {1 =€) =constant. {44)
d? d?.

Activation energies may be quite accurately and simply obtained from eq (44) by successive
approximations ax tables of log p{—EfRT) and A log pi—EfRT) for various EfRT are available[10, 11].
Once an approximate £ is obtained from eq (44), the “constant,” which changes from 0477 at
E{RT=20 to 0.449 at EfRT =61, is redetermined for the approximate E/RT and successively more
accurate values of E are obtained.
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The independence of £ from € and T may bhe tested by determining £ at various conatant
conversion values,

In an excellent and important paper, recently to come to our attention, QOzawa [27a] also de-
velops eq {44) but employs it without further refinement to caleulate ¥ at several © values, He
sets up appropriate thesretical master-curves of {1 —) versus log @ [=log (4E/BR)pix}] for, e.g.,
gimple nth order reactions and for the random degradation of polymers [eq (6}] for N L and
L=2 3,4, and 5. A more accurate experimental master curve is obtained by supenimposing
curves of log 8 versus 1/T at several heating rates by displacement along the abscissa. Values
of € and ¥ from thiz curve are used to construct a plot of (1 — €} versus log [{E/8RpE{RTY] which
may be matched to the appropriate theoretical curve hy displacement of log A4 along the abscizaa,
thus determining A and confirming the assumed kinetic equation.

This appears to be one of the best and most generally applicable methods yet developed.

If FIC) may be represented as a simple rth order reaction as in eq (3) then eq {44) becomes,

log [ﬂ'_ﬁ%]z log ’%—log B—2.315— 0.457 % (% 1) (45)

so for the slopes of plots of log 8 versus 1/T at constant C, log [(1 —CP—"— 1] versus 1T at constant
B, and log [(1 —CP—~—1] versus log 8 at constant T, one obtains

d-——ﬁl"‘i z+u.45?%a”"h' [“_";'}'_'_11 (46)
¢F 97
{C = eomstant) {8 = constant) in»1)
_dlog [(1—Cy-"—1]
dlog B
in=1) . 7
_dloghh (1-6)
diog 8
(n=1)

{T'=constant).

The right-hand side of eq (46) may be applied to a single thermogravimetric trace and has the
advantage over the approximate methods of Farmer [14] and Coats and Redfern [29], [eq {29) and
{30)], in that successive approximations in the manner described above can be used to determine
accurate values of the parameters. The order, i, may be tested by aq (47), the correct r giving
a horizontal plot.

Once B, r, E, T, and € are known, ohe may substitute into eq {45) to determine 4. Thence,
constaney of A with changing T and  should be a confirmation of the validity of n.

Ay this method is the most adaptable of the integral methods, we demonstrate its utility with
the theorietical cases of “changing order™ (maximum Cases A, B, and C) and “changing activation
energy” [composite Cases (I} and (2)].

Figure 10 containz the integral curves for 8, =0.05, 8:=0.10, and 8, =0.20 °K/sec for Case
B with a maximum isothermal rate at € =0.5. Values of I at constant £ were obiained from these
curves for C=0,02, 0.10, 0.23, 0.50, 0.75, (L™}, and 0.98 and plots of log 8 versus 1/T are shown
in figure 14. The slopes of these lines give, irom eq {44), £, ope = 59,300+ 200 calfmol. Upon
reevaluating the constant in eq (44) for (E/RT), poree.. one obtains Epceq = 59,850 cal/mol com-
pared with the theoretical valize of 60,000 f11].
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Ficuse 14. Logarithm of hecting rate verses reeiprocal
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Therefore, this not only permits determination of the correct activation energy for this case
of “changing vrder™ but establishes its independence of © and T over the reaction range.

Equation {#4) should not be expected to apply to composite cases since it was derived assuming
a single temperature dependent rate constant. However, application to the independemt and
competitive firast order reactions shown in figure 12 and 13 demonstrate some of the limitations of
the method and how it may be utilized to interpret these simple cases.

In Ggure 15, log B is plotied against 1fT for—(a) two first order competitive reaction, and
{(b) 1wo frst order independent reactions, for E; = 30,000, Ex= 60,000 calfmol, =0.001, (.01, 0.1
and 1.0 °K/sec and € =013, 0.25, 0.50, 0.75, and 0.90. The theoretical stopes for £, = 30,04 and
Ez=00,000 calfmol are included as guidelines.

For two competitive reactions, {fig. 15a), at low conversion, (C ={0.10), the low activation energy
reaction is dominant at all heating rates so a slope corresponding wo 30,000 cal/mal is ohtained.
At high conversion, (£ =09, the low energy reaction is still dominant at slow heating rates but
the intrusion of the high activation energy reaction can he observed at fast 8. A readjusiment of
the parameters could set up a sitnation in which the high energy reaction was dominant except
at low € and 8.

For two independent first order reactions (hg. 15b), at low conversion and alow 8, the low
encrgy reaction is dominant but at low € and fast 8 the slope is perturbed by the high energy
reaction. At high conversion, the high energy reaction is dominant at slow 2, but, as before,
a mixture ol E; and E; reactions contribute at fast 8.

In general, employing the lowest practicable heating rate will best isolate competing reactions.
However, it may occasionally be expedient to raise the heating rate to pick up a high energy reac-
tion that may not be easily discernible under near-isothermal conditions.

We conclude, therefore, that only methods involving several heating raies can give the correct
activation energy for cases of “varying order” (Cases A, B, and C) and reveal and, 10 some extent,
reaclve cases of “varying activation energy” {Cases (1) and (2)) in which several competing reactions
DCCUT.
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The integral metheds involving a single thermogram appear to be applicable only in apecial
cases in which the isothermal order is known and meaningful. However, integral curve fitting
should be considered important corraborative evidence in the testing of mechanism.

4.2, Diffarential Mathods

“Differential” methods based on rate of weight loss versus temperature data have been
devised which are much simpler in applicaiion and, in some cases, are able to ciccumvent dithcul-
ties found in many “integral” methods. However, they suffer from an inherent weakness —che
magnification of experimental scatter—ofien rendering their application to experimeatal data
difficult, if no1 impossible,

Yan Krevelen et al. [17], calevlated solutions for p{x) using two terms of eq (13c) and plotted
families of curves for various T for log (T(dC/dT may and log (AT T versus log EfR for
first order reactions. AT is the half-width of the differential curve.

Turner zad Schoitzer [28] used three terms of aq {13¢) for pir} and refined van Krevelen's
relationships for 2 =1 to obtain expressions relating E{R to Ty and AT, AT, Tppy and (€ dNmax
were estimated from a differential curve for each of several composite reactions and values for
the patameters obtained. Turner et al. [29], using an identical development, obtained similar
expressions for n=%s However, the equations in references [28] and [29] are in error [15].

Kaesche-Krischer and Heinrick [30] used van Krevelen's method at severa! heating rates to
investigate the composite kinetics of polyvinyl alcohol decomposition.  The utility of 1his method
depends “on how closely the assumed order of kinetics is followed. If the kinetics, in reality,
behaves as 4 lower order reaction, then the caleulated value for £ will be too high, and conversely,
if n is greater than its assumed value, the calculated £ will be too low.  Application of this method
10 maximum Cases A, B, and C gave activation energies from 70 to 1530 keal/mol compared with
the theoretical value of 60. Van Krevelen [17], assuming n= 1, ohtained activation energies for
polystyrene and polyethylene of 82 and 98 kcal/mol. These polymers which often exhibit maximum
type isothermal rate curves usually have activation energies of the order of 55 and 70 kealfmol,
respectively [5].

" Equation (11) at the maximum rate becomes

(j_g)w =§“-%f““‘"“ 48)

which may be combined with eq {21) and eq (30) which utilizes the three term asymptotic approxi-
mation 1o obtain

- ”
and
Al — Ol =1+ (n—1) Hlums 50)
in=>0, 1)

In (1= Clppay = 1-&;'“]
{n=1}.

These eqs {48}, 49, and {30 were first derived for first order reactions and used by Muorry
and White [31]. The solution of eq (49 was facilitated by using several heating rates.  Kissinger
[32] extended Murry and White's method to any order, r, by deriving eqs (48}, (49}, and (50} as
shown above.
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Kissinger [33] differentiated the logarithm of eq (49) to obtain for n=1

Pons o E. (1)
g1 R
Tm

Thue the activation energy may be obtained from the shift of the maximum temperature with
beating rate. Equation (51) is identical to eq (42) which was also detived assuming r=1 and a
reference temperature [27, 21].  Substituting eq (30) into (49 and diffeventiating the logarithm
assuming T,y changes slowly with 8, Kissinger [32] again obtains eq (31) now for any .

Kissinger [32] also has developed & shape index, s, defined as the absolate valee of the ratio
of the tangents to the differential curves at the inflection points and related to the order by

n=1.24 511, (52)

Such higher derivative methods are seldom practical for polymear degradation studies.

Fuoss et al. [34], suggest determining the three maximum values, Fooy, (0 d T pnay and (10 0
from the inflection point of the integral curve and determining the activation energy from eq {21).
The method as described [34] is applicable only to first order kinetics and not to all orders an is
implied by the omission of a from eq (21).  Such an emizsion leads, abviously, to the exceptionally
high value for E for polystyrene indicated in this paper {34).

However, (1 — Cly,, i5 relatively independent of the heating rate, 8. I eq {10) including two
terms of the asympiotic approximation, eqg (13a), is combined with eq (49} at the maximum, one
obtains

L

(1=C)py mr'~*  [r>0, # 1) (53)

Equation (53) was Arst pointed out by Kissinger [32] and aleo was derived by Horowitz and
Metzger [21] from their nearly equivalent approximation. Thus eq (21} becomes

Ew n'%lﬂl'}m (%:)m {n>=>0, =1} 54)

The last two columns in table 2 give the approximate (1 — C) nax, [i-81, columns (1 — C)paxix =)
and a¥*1f(x=o)], which may be utilized with eq (54) te determine activation energies if the
valoe and constancy of r have been established. If (1 —C),,. is independent of &, then from
eq (21) T2, (dC/dT)mex must also be independent. Such independence is inherent in the use of
the two term asymptotic approximation as differentiation of eq (48} with respect 1o § assuming
T o dCIAT) puax and {1 — C)pyy constant results in eq (51).

. Tasik 2. Falues of (1 — Chucy for various orders and x's
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It also followa that

zdmrmadh(%r)mg 1 5
dln B dln g E

and from eq (B) that

8 (5

s = A5 Ty = (56)

(L

(e

so, if & is known, E and 4 may be determined from a plot of lug{T—*c.n versus —— for sevaral
| k9

A. Differentiation of eq (56) with respect to £ assuming (1—C},,, constant resulta in

dlnﬁ(ﬁ E
d(—,};,)m =% &N

which is an equivalent forin of aq (51).

Farmer [16] has developed equations For Ty, the temperature at which € =0.5. The relative
error [eq (28)], rz, in asing the first two terms of the asymptotic approximation is related to con-
version at the maximum by [16]

{1=Clpar™=e"
{n=01
1
—n =
(1 —Chypax= Tn+ 1] (58)
n=l)

Therefore the two-term approximation holds exactly (ra=12) only at x=—EfRT=0. Utilizing
values of r: as funetions of x from table 1, we can calenlate the {1 =)y s, values for several valyes
of x as is shown in table 2,

The approximate values for {1 — Clypl— x =) may be in considerable error for cases of low
E{RT .x and vse of eq (53) will result in large ervor in determining .  However, if the approximate
EfRT say 18 known, appropriate corrections may be made from table 2,

If dC{d1{T is plotted versus 1/T, the maximum rate is

(:fC)m“ (& 4+ ET ) {1 — Clgax 212)

Al

which is practically independent of temperatuere. Other equations at the maximym will be modi-
fied accordingly.
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The actual application of these many mathematical excercises at the maximum rate are limited
to cases where r is known and its validity over the entire range of conversion has been established.
An example of the magnitude of the error which may result in the misapplication of & single point
method may be observed from the calculation of E from Case B.  First order kinetics would appear
to hold as (1—C),,=0.35 for this cate. However, calculation of £ from eq (21) for n=1 gives
E o pparem = 135,000 calfmol compared with Epnmica=50,000 calfmol. Subsequently, it will be
shown that a first order curve will give a deceptively good fit for both the differential and integral
curves for such cases of maximum isothermal rate.

The simplest differential method for determining kinetic parameters is an Arrhenins plot of
the bogarithm of the nth order rate conatant, &y, against the reciprocal of the absolute temperature
since from eq {11),

dac
log k= lug[ (l C]']ﬂl ﬁ—l"—{'l—g ~—(r~—1}log (1—C)=log A— 23.&1‘ (59)

or at 3 =constant,
LA

o L =l ‘i_L
€lii—cr| 88 23RT

Kofstand [35] used eq {59} to test for linear (n=0), parabolic {(n=—1) and cubic (r=—2) rate laws
and determine activation energies for the oxidation of metals.

Barrer and Bratt, Newkirk, and others [36—40, 2] have employed eq (59) for n=1 to determine
activation energies from thermogravimetric data. This method may be wsed early in the teaction
to determine initial parameters as the early parts of most reactions ate more ox less indepandent of
arder. However, it has been suggested that this method be used over the whole range of volatiliza-
tion [2,37] with values for ¥ obtained from linear portions of the log (dIn C){dT versus 1/Tplot. As
with other differantial proceduras this will lead te too high values for £ if n<1 and too low values
if #>>1. Thns, when this method is applied to Canes B and C, high values are obiained for E.
In order to obtain accurate activation energies, one would have to know or guesa the approximate
value of n that the reaction appeared to follow in the range of determination,

Ingraham and Marier [41] have used this method for 8 zere order reaction assuming a linear
temperature dependence of the preexponentigd factor and ohtained a linear relationship between
log 1T {(dC{dT) and /T,

The differential methods treated thus far assume the existence of a single order, R, At worse,
they determine order at a single point such as the maximum rate. At best, they do not rigorously
and sufficiently test their initial postulate as to the constancy of the parameters as does the inte-
gral method at several heating rates or as does a similar differential method which follows.

As in the case of integral methods, it is pecessary to perform experiments at several heating
rates in order to reveal changes in the kinetic mechanism which might affect the reliability of param-
eters determined from the data. Anderson [42] solves the three simultaneous equations for eq
(539} at three different 8 with an electronic computer for the parameters 4, n, and E at a series of
constant (1 —{) values, Any systematic drift in parameters with changing conversion would be
indicative that the assnmptions —single order and single temperature dependent rate constant —
do not hold.

The most generally applicable differential method was developed by Friedman [43] who utilized
eq (9 in logarithmic form, i.e.,

]"(;ﬂ =lng ="”‘ﬂm RT | 60)
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(dCidty and T are determined at constant € for several 8, thus a plot of In (dC/dt) versus LfT will
have a slope of EfR and an intercept of In AC). Ii E proves to be constant over a range of C
values then, irom eq (59) and (60), a plot of ln AFC) versus In {1 —C€) will have a slope ol & and
intercept of In A if an ath order kinetic mechanism i= operative,

In general, differentiation of eq {60) at constant € or constant dCfdr gives

In &
3& E_dIn AfiC)

)

4z

{=conat) (%mnst)

or if fIC)=(1—C),

at;
dng g pLin =0
1 R
d T {f T 62)
(€ =const) (%c— mnst)
o In ac
dina—0 " ¢
(T'= const).

The validity of AC)=(1 — ) may be tested from several runs at different 8 either at constant
rates of constant temperatore.

The right-hand side of eq (62) may be applied to a single differential plot when a = 0, since
under these conditions 4C{dr is a dual-valued function. The constancy of Efr may be tested at
a series of constant dC/dt values. However, such constancy does not “prove™ that the reaction
ia rth order. Experiments at several heating rates are essential for such proof.

Chatterjee [44] quite recently has expressed eq (63} in terms of W, the weight of sample

remaining,
s ()
dt/ _
Alg® " (64

(T'=rconat)

and the order r may be determined at several temperatures from two runs dlﬁenng only in their
initial weights.

It may be noted that the preexponential factor of the dC/d¢ equatign is F}~! imes the corre-
sponding preexponential factor of the &% /dt equation [45].  Also, if an initial order is determined by
this method, a distinction between the “order with respect to initial weight™ and the “order with
reapect to temperature {time)” may be useful in the interpretation of the mechanism of complex
reactions. The order with respect ta initial weight, #y, may be determined from two or more runs
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at different F, from an integral method, aince from eq (43)

4 log Wy 0.457F
A l fﬂw—l}ﬂ
T

at constant ¥ and 8.

After the determination of a, Chatterjee [44] suggests determining £ from a single run by a
difference-differential method. However, his method may be extended to apply to any fiF) » F*
since eq (62), for two or more runs at different initial sample weights becomes

W
d T b N ARR)
== {65)
PY S
T T

{const F) (conat %)

Chatierjee [44] suggesis using eq (64) to determine the order of competitive reactions by firat
calculating 4, and E; early in the Arst reaction and subtracting off the portion of the rate (calculated
from A; and Ey) due to the first reaction from the second and sa on.  When change in 5 is due to
competitive reactions this method may be applied oniy when the orders of the several reactions
are diffevent [16] and the rates of each step are proportional 1o a power of the total weight of mate-
Hal. An added problem is the determination of r early in the reactton.

We may test the applicability of Friedman's method [43] to the cazes of “changing order”
and “changing activation energy.” Figure 16 iz a plot of log dC/dt versus 1/ T for Case B with
4 maximum isothermal rate at 50 percent conversion.  As with the integral method, parallel straight
lines are obtained for degrees of conversion ranging between 0.04 and 0.95. The average value
of E . 18 59,808 = 1500 compared with 60,000 caifmol, theoretical.

In 8 (dCidT) is plotied against 1/T for two first order independent composite reactions in
figure 17, as was done for the integral method in figure 15b. Figure 18 iz a similar plot for 1wo
first order competitive reactions.  Again, theoretical slopes for £, =30,000 and £; =60,000 cal/mol
are included for comparison purposes. The close similarity of these resuits to those of the integral
method is obvious and the interpretation of figures 17 and 18 is identical to that of figure 15. Com-
parigon of eqs (61) and (44) shows the dominance of A In # over A In (dC/dT) and thus, explains
the close similarity of the two methods.

Ficure 16. Logarithm of thermogravimelric rale Versus
reciprocal absolute temperaturs for Cate B.

A= 10 pec: E= 60000 oallmol
B, =004, g =010, B =050 Kl
£ D04, £ 00, D20, 0,50, 040, 05-'.] O, {70, 080, 0,00, and D95
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FicuRe 17. Logarithm of thermogrovimetric rote versus & C=010 3 Com i,
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JSirze order reactions,
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L D=k 14 O C=01%
L Cm2S [N AET L i
f, =050

The practical merits of the two methods may now be compared. The integral method [eq
(44)] is simpler than the differential [eq (61} method and quicker as it does oot involve the deter-
mination of rates. However, no successive approximations are necessary for the differential
method. (It will be shown that the integral method may become exact by appropriate programming
of the heating rate.) :

On the .other hahd, many polymer decompositions are subject to early kinetic irregulan-
tieg (¢.g., a temperature dependent induction petiod).’. Such complications may medify param-
eters oblained from an integral method as they depend upor cumulative values of the experimental
parameters. Differential methods which give instameous values for parameters are not subject
to these complications. The preexponential factor, 4, and the order, n, if it exists, may be deter-
mined directly from the intercept in either method and both methods are equally capable of inter-
preting cases of changing order or activation energy.

To summarize, of the differential methads, only those involving several thermograms appear
to he generaily applicable. Methods involving a single thermogravimetric trace should be applied
only to systems where all material volatilizes by the same simple kinetic process.

4.3. Differenca-Difforential Methods

The difference-differential method of Freeman and Carral [46) and its modification [38] is
the most widely used method for the kinetic analysis of thermogravimetric data. T has been
applied both to the investigation of inorganic materials [46, 2, 39, 47, 48] and polymers [38, 40, 2,
20, 4],

The difference form of eq {59) is

dC dC E 1
A logZr=Alog fm=nd log{l —O)— 5=z a~ (66}

and the difference forms of eqs (62) and (63) are

dC 1
ﬁlogﬂﬁ E ﬁ(?)
Alog(1-C) " 23RABTIog(l—0)
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5 tog4C al =
dt T
FicLRE 19, | ———= | wersur | ———— | for Case B. 2

4 loxi(1—C) A fogt 1 —C)
A= 10" gep; B =50 000 calitvd: F=10. 10 Kfsec
Imbercepd =n plops = E52 AR,
']
nnl§
RNT.1

A7)

T/ _23RAlogil—€) 23R
i

ihgﬂﬁ ﬂhgﬁﬁ

‘3‘1“5‘3%: Alog(1—C)__E_
IR

T
Equaticns (67} and (69) have been used to obtain the parameters, E and x, from thermogravi-
metric data with reported success not only for simple inorganic decompositions but also for com-
plex polymetic systems. Therefore it is of interest to apply these equations to Case B with a

{69)

M
Alog g %
maximum isothermal rate at 50 percent conversion. Figure 19 is a plot of ;———— against
1 Alog(1—€)
AT
&-—_-—lug 1= for this case with a constant energy of activation of 60,000 calfmol. Similar results

are obtained from eqs (68) and (6%,
Three conversion ranges of constant slope may be obtained {rom figure 19 as might be antici-

paied for a cubic. These give the following values for n and E,

1-13% conversion E= 66500 calfmol n==24
13-50% conversion E =105,000 calf{mol n=-+{03
S0-95%% conversion E=175,000 calimaol n= 1.25.

The data may be interpeted as follows: between 1 and 13 percent conversion, the data are
fitted by the parameters E=66.500 calfmol, and n=—2.4, ete. Since a is negative initially and
becomes positive the isothermal rate must pass through a maximum value. The value of £ does
not have any correspondence to its theoretical valoe except in the initial conversion range. Treat-
ing ezch linear range independently does not improve the results. Therefore, the difference-
differential method gives a procedural s and £ for the different ranges but these have no mech-
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& fog(1—C}
peiitine first order regctions,

,“,,g'-:l_ﬁ] A togll—C) £i. Eeo A1, £y, s § o I Bgure 13,
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FrzurE 20, Todl LT} Ty [W] for com-

s [ o

Freurg 21 |: E Toall—C)

pecitive first order reactions,
& Ep A A and A, arin fgats 13,

anistic significance, €.g., the activation energies obtained for the middle conversion range of
polystyrene and polyethylene in reference [38] may well be in error.
The Freeman-Carrol method is applied to two competitive first order reactions (Case 2) of

30,000 and 60,000 calfmol, respectively, in figures 20 and 21.
Analysis of these figures allows a critical investigation of this method as first order kinetics

is followed by both reactions. The scatter of pointz a1 low conversion in figure 12 due to the
determination of 1—€ and dC/dt values from theoretical curves wis cut down by determining them
directly from the theoretical equations for figures 20 and 21.

[
A log == _
et ia plotted against 4 log 1-C)

1 1
87 A (?]

in figure 20. The theoretical intercepts at £— 0 for £=30,000 and 60,000 calimol and the the-

oretical slopes for n=1 are indicated. As C—0, the corve approaches the correct intercept,

{(E=30,000), but the slight perturbation by the £=60,000 reaction coupled with the lack of sensi-

tivity toward n at low conversion tends 10 make the reaction appear to be zere order.  The slope
approaches n=1 only at high conversion, but with an imercep of £ = 40,000,

4C 1

A log — A T

mls plotted agmnsiﬁl a1—C)

in figure 21, The theoretical intercepts at C— 1.0 for r=1 and the theoretical slopes for £=230,000
and 60,000 calfmaol are indicated. In the le=s than 30 percent conversion range, a slope reasonably
close to 30,000 may be obtained but the perturbation of the high energy reaction is great enough
to throw the intercept toward zero order. The inermediate conversion range gives slopes between
30,000 and 60,000 and intercepts less than unity. Only as £—1 may n be accurately determined
from the intercept.
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It is obvions from the above caaes that it is difficult to differentiate between deviations from
constancy due to “changing ordet™ and “changing activation energy” with this method.

If the reaction follows a simple order, k may best be determined at high conversion gither from
the slope of eq (69} or the intercept of eq (67). The activetion energy may be determined either
from the intercept at low conversion for eq (69) or the slope of eq (67),

In general one may obtain the initial parameters only if values of high accuracy can be obtained
for A dC/dt at low conversions. The experimental scatter, doubly magnified by taking the differ-
ence of a derivative, often will not allow the determination of order at low conversion where the
dependence on a is shight.

Theae methods seem 10 be of limited applicability to polymeric systems where the kinetics
often is complex.

4.4. Initiol Rotes

Even where () in eq (1) is unknown, the activation energy often can be determined as near
to initial conditions as possible since all well-behaved reactions approach zero order as € —0.

Since the initial conditions for a thermally decomposing system are usually thase most pre-
cisely characterized, the initial values of the kinetic parameters are often particularly useful
in determining mechanism. Accurate initial weightloss values are unattainable in isothermal
studies due to an inevitable ime.lag in reaching experimental tempetature.

This independence of order at low conversion means that a plot of the logarithm of a “zers
order rate constant,” e.g., @C{dt, €fT* [20], C [26], or the logarithm of a **first order rate constant,”
&g, (d In CWdT [36-30, 4, 16], log (1 —C) [26], or the logarithm of an “sth order rate constant,”
(151 —Cy] JCi4T, [35], versus T or 1/T+a In T will give approximately the same values for
activation energy at low €. Difference-differential equations, e.g., eq (69, 1o determine initial
E have been suggested [44] but are not usually practical for reasons stressed in the previous section.

The In T term which modifies the reciprocal temperature may enter as & temperature depend-
ence of the preexponential factor, through an integral series approximation or a temperature
dependence of the heating rate. It has been shown to be trivial except at low E. In general,
if the order assumed in calculating E is higher than is actually the case, the resnltant activation
energy will be greater than the true value, although, where integral expressiona are nsed other
approximations may reverse this effect.

From eqs (19} and (20) for =10, the slope of a plot of dC/&T versus € 18 E/RTE.  [In fact, for
any n, plots of [1/(1 — "] dC/dT versus (1 — £V *f1—n, (n# 1), and o In (1—C)ydT versus In (1—C),
{n=1), have a slope of EfRT2] F may be determined from the initial slope of a 4C1dT versus ©
curve as the secand term in eq (19} is negligible at low €. This is shown for Case B in figure 22,
From the slope, one obtains Egq, = RT? (slope}= 670 X 2 X 0.0068 = 61,000 cal/mol compared with
Enooe=00,000. The error in the calcnlated E results from dificulty in assigning a valee to T, the
average temperature over which the slope was determined.

This problem may be overcome by plotting — dC/d(1/1) i= T{dC{dT)) versus €. The slope then

becomes

_E_ o5 _fiGydC
=g+ T iy
dC drT tfﬂ'dl?
E L gpan dC
=R
T
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Froure 22, faitiol thermogravimetric rate porsus oo
version for Case B,
AR =1 PE g = EL D00 ek

Thus at low €, the slope will equal E/R + 2T where EfR » 2T. In praclice an average £ may be
obiained from a set of O, 44T and T at low € since

+(r )

re (4
E om T NdTh -
ic =R+2Tor G =F+27T;
{71}
AT (d’T) —
E= L ORT at C1.

€

Several methods have been applied to determine the initial activation energies for simple
orders and the "maximum” cases. At €=0.05, Doyle’s method [10] give E=62 400 cal{mol for
Case B. Equation (31) of Coats and Redfern [20] gave £=01,800 at C=0.04. Equation {41) of
Beich [26] gave a low value of 59 (0} as eq {41) differs from eq (313 by 21In T.

In general, (CfdT) versus C plots remain Linear to higher conversions than log (dC{dT) versus
LT plots. Methods involving log &, versus 1/T gave the correct slope up te € = 0.01 for Case B,
while dC/dT versus £ js hnear o £ = 0,03,

If a procedural r may be approximated, log [(1/i1 — O )dC/dT versus 1/ or [(1f(2 — O] dC/dT
versus (1 —CP-"{1 —n may remain linear over a wide range of concentration. However, a linear
plot of log k. versue 1/T at low conversion does not imply nth order Kinetics as has been stated by
some investigaiors.

The apparent advanmiage of thermogravimetric over isothermal methods for the determina-
tion of initial parameters is not always experimentally realizable. Accurate data are necessary
at low conversions and should be obtained at low heating rates to separate any competing reac-
tiona such as volailization of solvent.,

4.5. Nonlinear and Cyclic Heuting Ratex

Techniques involving the programming of reaction variables are as yet a quite undeveloped
tool for the elucidation of kinetic mechanisms. In general, we may wote,

aC 1Y,
primiviaat i (1 CUBIENG SSNRIS & (72)



where the reaction variables, ¥i, may include concentration of any reacting species, temperature,
light intensity, dose of ionizing radiation, catalyst concentration, inhibitor concentration, product
concentration, intermediate concentration, solvent concentration, dielectric constant of solvent,
pH, ionic strength, ete.

Time, of course, is & unique monotonously increasing variable. However all other reaction
variables may, at least in theory, he programmed to increase ot decrease with time during the
course of the reaction at a rate given by

=s=e(3 ) 7

A may be any function from zero (isothermal case, if ¥;=7) to an integral transform and may in-
clude several arbitrary constants and reaction variables.

It may be simpler in some cases, e.g., the pH of an unbuffered solution, to allow & reaction
variahle to change in a prescribed manner rather than to keep it constant. If the change in a
reaction variable may be measared, then an empirical equation may be fitted to its change with
time. In such a case, any dependence of the empirical constants on the reaction variables shonld

be investigated.
YA Y;!
%! ( - (74

Combining eqs (72) and {73),
s(z7)

A judicious selection of & may simplify the kinetics and information concerning the kinetic mech-
anism may be elicited through the variation of the parameters. Also, this permita the analyses
of a large variety of differential expressions of the form —J¥,/d¥;.

An application of such techniques has been made recently by Ozawa [27a] and is well adapted
te his method of kinetic analysis. For simple random degradation of polymers, the rate of change
of fraction of bonds broken, dofdt, is given by a simple first order equation

S

=1
B

=L ge-manl— o, )

Equation {75) may be combined, upon integration, with eq {(5) to construct master curves of (1—{)
versus P for N L and £=2, 3, 4, 5, . . . . In general, if F=FJl—€C)=g¥}, and £F/dt
=Ae~FATL(YY), then integration results in relationship between conversion and v,

t
Since £ and the reduced time, §=®/d= J; e EtTdqi=@8, E, R, T), are independent of C,

Ozawa [27a] suggests that they be vsed to define thermal stahility for materials for which the
temperature dependence of the measured property can be expressed by a single Arrhenius
equatin.

Many of the analytical kinetic procedures discussed in this article may be greatly simplified
by the appropriate programming of the heating rate, for if

and the temperature dependence of the preexponential factor is T%, 712, or I, reapectively and

57
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then if m=2, 2V, ar 3, respectively, one obtainz

— Eg d_c: - 2s—EINT
Bai aT ot O (76)
which is easily integrated to obtain
_[TdC _ARf* AR
Fiéy= o AC) aE s, “dx= "ol EiAT (i

eliminaling all problems associated with the exponential integral.

Programming of B#=aT?, ie,, time proportional 1o /T, should pose no special problem; for
example, between 200 and 600 °C only a three-fold increase in heating rate would take place.

All integral approximations are now unnecessary as,

2
pla) =B e-einr (139

and, for example,

dlnag E _dln FC) dIn[(1—C)-—1)

P P 4o
I T r
{eonst &) {const o}
din[1-€P>—1_ . dlnla(1—C) ,
dlna ' dha @7
n=1) (const T} (=1
The slape of the rate versuz converzion curve now becomes,
0 F 2 fiddaC .
dCdT RTE T fC) dT (19)
and
£ 1) dC
R A 1_
T
d 2
A (T-' F)_ (70")
E__n dC
R 1-C 1
d7
g0 that
&7 (),
=Taﬂ:eﬁl. (71
The relationships at the maximum rate are simplified in some cases,
(E) _(E— 2R T )1 —Cloyr ,
dT /max nRTZ,, @l

=14



or

(—1 =—§{1—C’hmg (21a’)
d_
T/ max
a1~ €t =1+ (n— 1y i mae 50}
dlhe E ,
= 51

ele.,
All differential and difference-differential equations are the same if S(dC{dI=dCidt is

replaced by aTHJC/dT), thus,

d

dln g —
lﬂ=%+2r n‘“““l £ 61')

dF i
{const £ (tf‘,—f—const)
oT
o 1n aT’d—E
df _E .
1 =R ete. 62
a7
(= const)

and eq {63) does not change as is true of all equations at constant temperature.

Thus, in summary, the programming of the heating rate proportional to the square of the
temperatyre greatly simplifies integral methods tendeting approximate equations exact. Rate
versos composition equations are simpler as are expressions relating rate, composition and tem-
perature at the maximum rate. Rate versus temperature methods are modified by the substitation
dCldt= g {dC{dTy=al?* {(dC{dN=—a dCHd 1iT),

Other cases of nonlinear heating rates have been developed for the investigation of the ageing
of insulating matecial [51,52] The case in which the rate of heating increases and decreases as
an exponential function of tme is of some interest as such behavior approximates the heating and
cooling curves of an electrical oven heated at a constant load and then shut off to cool.  Thus, at
least in theory, once the time constant has been determined, such an apparatus may be osed in
thermogravimetrc investigationa without temperature control.

The differential eq ) is independent of heating rate 30 in many differential methads in which
the simultaneous determination of T, 1-C, and JC/dt (d¥F{dt} are utilized, the analytic form or
the value of the heating rate need not be known. Thus in eq (59), since 8 (dC/dT) = dC}dt, there
is mo need to know # or to keep it constant unless a method comparing several heating rates is
to be used.

On the other hand, all integrated expressions assume a partienlar function for & s0 methods
incloding integral forms depend on assumptions made concerning the rate of heating.

Eqguoations at the maximom, e.g., eq (21}, are independent of the conditions used in reaching
the maximum but assumne that § is constant in the region of the maximum, otherwise an additional
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tetm containing the temperature acceleration wonld be necessary. Many of the other equations
at the maximum are combinations of differential and integrated equations.

* Equations (61), (62), and (63) should be applicable in a two-point diference form itrespectve
of the previous variation of 8 for at any two temperatures at which (dC/dt), ={dC/dt)s.

£(F—7) = mia—cwa—cn 62)

or if the same tempetature is obtained hy any rate of heating followed by any rate of cooling, then

ln[(%:)l / (%)z] /ln[[l—ﬂ']:f[l—ﬂ]:]=n. 63)

In order to utilize the lefi-hand sides of eqs (61} and (62), in a similar manner, two separate
mns must be performed at different rates of heating such that at the same degree of conversion
there will be different rates and temperatures so that a1 {1—Ch={1—C%

w(G)./ @/ &7)=F e
for any F(C).

Reich, Lee and Levi [53] have applied aq (69) at constant J€/dT,

Slogf_ AlogW__E_ .
1 P 1 23R (69
ad Az

(% - COns l)

to cases where & was changed in magnitude andfor sign during a single run 1o ebiain valwes for
r and E. In runs in which the sample was both heated and cooled, eq (63') was also used to
determine order,

The above methods should be used with caution for polymeric materials. Except for the
most simple systems, the initial starting material may undergo one or more condensed phase
physical or chemical transformations before velatilization. In such cases, where two samples at
the same degree of conversion have different heating histories, the rates of volatilization may not
be comparable. Anderson [42] suggests, as a test for compositional constancy, that a series of
M identical heating cycles be performed.  If the relationship in eq (T8}

1=Cu=(1—C) {78)

holds, then the kinetics follow a simple rth order relationship and a plot of the logarithm of the
residual fraction after M cyeles versus the number of cycles, M, should give a straight line whose
slope should equal the logarithm of the residual fraction after the first cycle,

Anderson [54] also suggests that sinee for a case following a simple order =,

dC
(E)., = &1 — L)) i)
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a plot of {dC/dt}n versus M could be matched with curves for various orders. Better still, a plot
of log{d"idthy versus M log(l —CY should vield a stope equal to .

5. Concaming the Uniguenaess of TGA Plots With Respect to Kinetic Parometers

It is quite clear from previous sections that, even for cases in which a single Arrhenius expres-
sion is operable, only methods involving several rates of heating determine & reliahle activation
energy parameter. Single point or even single curve methods may give spurious values for the
parameters £ and & as both the slope and the inflection point are dependent on () and EfRT.
A number of such methods give a reasonabie fit for Case B (Eype.r = 60,000 calfmol, isothermal
maximum rate at £=10.5) with a first order reaction but with an activation energy of approximately
135,000 calfmol.

Therefore, in the final three figures, we compare these 'wo cases in which the isothermal
kinetics differ so drastically and observe to what extent their thermogravimetric curves are
distinguishable.

Three integral curves (1 — versus T) are shown in figare 23. Curve 1is for k=1, E=180,000
calfmol and 4/8=9.3179 % 10®{zec; Curve 2, Case B (isothermal rate rises to a maximum three
times the initial rate at 50 percent conversion), E=40,000 calfmol, Aff=1.2057 x 10"sec, and
Curve 3, Case B, E= 35,000 calfmol, A{5=23.6000 X 10%sec. A/8 values were adjusted so that
the temperatures of the maximum rates would caincide.

The “maximum’ Curves 2 and 3 deviate from the first-order curves only in the first 20 percent
conversion range. DBetter fit in this range could undoubtedly be obtained with a different value
of r.

Thermogravimetric rate versus temperature curves are shown in figure 24 for the same cases.
The clesenese of fit well explains the especially poor results obtained when methods involving
maximum temperature, rate, conversion, ot half.width are apptied to Case B,

Thermogravimeltric rate versus conversion curves are shown in figure 25 for the same cases.
The superiority of this type plot for distinguishing between the two cases is evident. The depend-
eace of the initial slope upon only E and T permits a quick estimate of the initial activation energy
whose constancy with increasing converszion may be established threugh other methods.

FIGURE 23, Residuaf fraction sersya remparatiire,

L. First order K 1000 cxlimol: %=\l.3-l?‘h< 1P s FIeuRE 24,  Thermograuimstric rate verans lemperature.
4 1, 2. and 3. un in figmee 23
L Cass B E=290000 caljmod; E—].Zﬁ?ﬂ' [ LT

£ Case B: =15 000 calfmal; %:3.@0;: ¥ ae.
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To conclude, although there are some special cases for which a theoretical order has real
significance, in general, » must be looked upon as a purely empirical patameter, sometimes usefu)
in curve fitting.
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